
1127

Review

ISSN 1462-241610.2217/PGS.10.100 © 2010 Future Medicine Ltd Pharmacogenomics (2010) 11(8), 1127–1136

Toxicogenetics: population-based testing of drug 
and chemical safety in mouse models

One of the goals of mechanistic toxicology is 
the discovery of the biochemical mechanisms 
underlying toxicity responses in humans. This 
research leads to the discovery of genes and 
polymorphisms responsible for toxicity and 
an understanding of how molecular pathways 
are altered in response to xenobiotic exposure. 
Recent advances in high-throughput methods 
of gathering biological data and in computa-
tional power to manipulate these datasets has 
changed the manner in which this research can 
be conducted. While toxicology will always rely 
upon systematic in vitro and in vivo investiga-
tion of model systems, the generation of new 
hypotheses regarding the genetic causes of tox-
icity has benefited greatly from the sequencing 
of mammalian genomes and the invention of 
gene-expression microarrays. The sequenc-
ing of several mammalian genomes, including 
mouse [1] and human [2], has opened up new 
methods for investigating the genetic basis of 
toxicity responses. Gene-expression microarrays 
have produced a global view of transcriptional 
changes in response to xenobiotic exposure and 
have supported the discovery of gene clusters, 
which may be part of the same biological path-
way, that are related to injury. The combination 

of these two developments has opened up new 
approaches to the understanding of toxicity as it 
is affected by genetic variability [3].

Finding the associations 
between genes & complex traits: 
a preponderance of the 
human‑centric approach
Recent advances in technologies that per-
mit human genome-wide association studies 
(GWAS) with more than 1 million SNP have 
enabled the identification of genetic variants 
associated with important diseases [4]. In the 
past few years, more than 400 GWAS studies 
have been published, establishing a knowledge 
base that links hundreds of genetic variants to 
complex human diseases, as well as providing 
valuable insights into the complexities of their 
genetic architecture [5]. These studies have not 
been as successful as hoped for in the prediction 
of individual risk for developing a disease, but 
have been successful for identifying plausible 
molecular causes underlying polygenic diseases 
and traits. It is noteworthy that GWAS have 
‘found’ many genes that have been known to 
be important in the pathogenesis of the relevant 
diseases [6].

The rapid decline in the cost of dense genotyping is paving the way for new DNA sequence-based laboratory 
tests to move quickly into clinical practice, and to ultimately help realize the promise of ‘personalized’ 
therapies. These advances are based on the growing appreciation of genetics as an important dimension 
in science and the practice of investigative pharmacology and toxicology. On the clinical side, both the 
regulators and the pharmaceutical industry hope that the early identification of individuals prone to 
adverse drug effects will keep advantageous medicines on the market for the benefit of the vast majority 
of prospective patients. On the environmental health protection side, there is a clear need for better 
science to define the range and causes of susceptibility to adverse effects of chemicals in the population, 
so that the appropriate regulatory limits are established. In both cases, most of the research effort is 
focused on genome-wide association studies in humans where de novo genotyping of each subject is 
required. At the same time, the power of population-based preclinical safety testing in rodent models 
(e.g., mouse) remains to be fully exploited. Here, we highlight the approaches available to utilize the 
knowledge of DNA sequence and genetic diversity of the mouse as a species in mechanistic toxicology 
research. We posit that appropriate genetically defined mouse models may be combined with the limited 
data from human studies to not only discover the genetic determinants of susceptibility, but to also 
understand the molecular underpinnings of toxicity.
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With regards to adverse drug reactions, a num-
ber of important advances have also been made 
over the past decade with the help of GWAS 
approaches [7]. GWAS have identified gene targets 
for approved drugs, including thiazolidinediones 
and sulfonylureas, statins and estrogens [8,9]. The 
association between MHC alleles, especially 
HLA-B*5701, and susceptibility to adverse drug 
reactions manifesting through a diverse set of clin-
ical phenotypes is one of the most intriguing sto-
ries in pharmacogenomics [10–12]. Genetic screen-
ing is now advised or recommended for a number 
of drugs on the market with known adverse drug 
reactions, and the introduction of new clinical 
tests is likely to intensify as the ongoing trials make 
their way to peer review [13]. 

Although GWAS are increasingly popular 
and affordable, they present a number of formi-
dable logistical and technical challenges to the 
conduct of the studies and in the interpretation 
of the results [4]. These include the challenge 
of selecting a well-defined disease or trait suit-
able for analysis, the requirement for sufficiently 
large sample sizes, and the fact that most com-
mon variants, individually or in combination, 
confer relatively small increments in risk (up to 
1.5‑fold) and explain only a small proportion of 
heritability [5,14]. Human-only GWAS are also 
likely to remain expensive in terms of recruit-
ment and characterization (both phenotyping 
and genotyping) of the study cohorts.

The limitations of human GWAS studies 
may be alleviated, at least partially, by the use of 
appropriate genetically-defined model systems. 
Cell-based models have been extensively used 
in preclinical drug development for years as a 
means to evaluate drug-induced toxicity or to 
identify interactions of target compounds with 
drug-metabolizing enzymes and transporter 
proteins. Importantly, the availability of a large 
bank of commercially available and densely 
genotyped lymphoblastoid cell lines from the 
Centre d’Etude du Polymorphisme Humain 
(Paris, France) and Coriell Institute for Medical 
Research (NJ, USA) shows promise for in vitro 
pharmacogenetics research [15]. Rats are com-
monly used in drug safety evaluation experi-
ments, and the genetically diversified inbred 
rat strains are being developed [16] and used for 
population-based toxicity testing [17]. However, 
among the mammalian organism-based labora-
tory models, the mouse offers an unparalleled 
wealth of genetic knowledge and resources, 
among which is a high-density SNP database 
encompassing more than 8 million polymorphic 
loci across hundreds of inbred strains [18,19].

Mouse genetics: a useful 
resource for population-based 
toxicology studies
Mouse genetic studies can complement many 
shortcomings of both in vitro and human-only 
approaches in pharmacogenomics. For example, 
collection of tissues from a wide variety of ana-
tomical sites (e.g., brain and heart) or develop-
mental stages is problematic in humans, as are 
many experimental interventions. A successful 
GWAS analysis is more likely when the pheno-
type of interest can be sensitively and specifically 
defined and measured, which is usually not a 
limitation in a mouse system. With regards to 
the environmental health sciences and toxicol-
ogy, controlled exposure of people to environ-
mental toxicants is often ethically unacceptable, 
which makes it challenging to interpret genetic 
associations produced in human cohorts exposed 
in the occupational or environmental setting 
without validation in animal studies. 

In  vivo toxicity screens and mechanistic 
studies are often carried out in a single strain 
of mouse [20–22]. This is done in order to fix as 
many variables as possible and has the benefit 
of standardizing the genotype across multiple 
chemicals. While this approach provides mech-
anistic information regarding toxicant activity 
in a single genetic background, the reality of 
human toxicity is more complex, including both 
diverse genetic backgrounds and uncontrolled 
environmental effects. The interpretation of the 
data with respect to the population-wide effects 
is plagued by the largely inaccurate generaliza-
tions from a single genome; inability to distin-
guish small and biologically important changes 
from background variation; ineffective exploita-
tion of reproducible genetic variation to dissect 
differential response to chemical exposure; and 
inefficient use of defined genetic backgrounds to 
model particular phenotypic profiles observed 
in human populations. To address these impor-
tant limitations, various animal models are being 
used by toxicologists to assess gene–environment 
interactions and determine genetic causes of 
interindividual variability in toxicity. Indeed, 
genetic background is an important compo-
nent of toxicity responses [23,24], and a success-
ful in vivo approach to modeling the effects of 
genetic diversity on toxicity will improve both 
the prediction of toxicity in humans as well as 
the identification of sensitive subpopulations.

Panels of genetically defined animals that 
provide a fixed genotype within a particular 
strain but encompass great genetic diversity 
across strains are being used in biomedical 
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research [25]. Both standard intercrosses between 
inbred lines of mice, and large populations of 
inbred strains have been used as powerful tools 
for mapping quantitative trait loci (QTL). 
Inbred mouse strains represent fixed, renewable 
genotypes that are ideally suited for system bio
logy approaches to improve our understanding 
of the mechanisms of toxicity and discovery 
of new biomarkers associated with biological 
responses to toxicant exposure. Panels of inbred 
mouse strains are also well-suited for identifying 
whole-genome response signatures indicative of 
chemical exposure because of the large knowl-
edge base on the genetic lineage for hundreds of 
strains, and because the number and distribution 
of genetic polymorphisms among mouse strains 
is equal to or exceeds that in the human popu-
lation [26,27]. This approach also has the added 
advantage of ‘repeat testing’ in genetically iden-
tical individuals within a given strain, yielding 
important information regarding reproducibility 
of the response. 

When a research study into the genetic basis of 
toxicity is initiated, the responsible genes being 
sought could lie anywhere in the genome. A 
forward genetics approach, in which the genetic 
basis of toxicity is investigated, is a reasonable 
approach to this problem. The first step is to 
search for evidence that the responsible genes 
lie in certain chromosomal regions by detecting 
correlations between the toxicity phenotype and 
genotype at loci throughout the genome. This 
is often carried out using QTL mapping [28,29]. 
This involves selecting or breeding a genetically 
segregating population, such as a backcross or 
intercross between two inbred parental strains 
that demonstrate quantitative variation in the 
toxicity phenotype of interest. The quantitative 
phenotype, such as liver histology score or serum 
alkaline aminotransferase levels, is measured in 
each individual, who is then genotyped at a 
number of genetic markers across the genome. 
A statistic of association, such as a likelihood 
ratio statistic or a linear model, is then calculated 
between the phenotypic values and each marker. 

Using the ‘mouse model of the 
human population’ in translational 
clinical research
The diversity of the genotypes archived in dif-
ferent inbred mouse strains is ideally suited to 
identify and dissect genetic susceptibility in 
responses to toxicant exposure. To advance the 
understanding of health risks posed by toxi-
cants, and the role that genetic diversity plays in 
determining the variability of responses between 

individuals and species, panels of inbred mouse 
strains can be used to demonstrate the benefits 
afforded by combining mechanistic toxicology 
with genetics. 

A translational study, whereby candidate 
genes for susceptibility to toxicant-induced liver 
injury were discovered in a mouse population 
and subsequently validated in two independent 
human cohorts, was recently demonstrated 
using a well-known liver toxicant, acetamino-
phen [30]. A traditional ‘human-only’ approach 
to a genome-wide pharmacogenetic investiga-
tion into the genetic factors linked to liver tox-
icity of acetaminophen would require a much 
larger number of individuals to overcome sta-
tistical power limitations [31]. Conversely, a so-
called ‘candidate gene’ analysis [10] is equally 
challenging owing to the complexity of the 
mechanism of toxicity and the inherent biases 
in candidate gene selection [32]. By utilizing a 
mouse model for acetaminophen-induced liver 
toxicity, whole-genome association analysis 
and targeted sequencing, polymorphisms in 
Ly86, Cd44, Cd59a and Capn8 were identi-
fied that correlate strongly with liver injury [30]. 
Furthermore, these candidates were validated 
in two independent human cohorts where vol-
unteers were exposed to the maximum recom-
mended doses of acetaminophen. This study 
demonstrated that variation in the orthologous 
human gene, CD44, is associated with suscep-
tibility to acetaminophen. Interestingly, well-
characterized genes known to be essential for 
acetaminophen toxicity did not correlate with 
liver injury in the panel of mouse strains. This 
finding suggests that while a priori knowledge 
of the toxicant’s mode of action can be useful 
in the selection of genes for follow-up analysis, 
validation of susceptibility-modulating genes 
in the laboratory is essential. This finding also 
illustrates the important difference between 
genes involved in mechanistic pathways lead-
ing to toxicant-induced injury and genes whose 
variants contribute to interindividual differences 
in susceptibility to toxicity, two areas that have 
potentially different gene sets.

It is noteworthy that the top candidate genes 
derived from the analysis of the mouse popula-
tion were related to the immune response, and 
not to metabolism and detoxification of acet-
aminophen. Interestingly, in several cytokine 
knockout mouse studies of acetaminophen 
toxicity, the sensitivity to liver necrosis was also 
largely independent of glutathione depletion [32]. 
The traditional view on the mechanisms of tox-
icity, the approach widely utilized to predict 
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individual responses to toxicants, would imply 
that the metabolism of acetaminophen to the 
reactive electrophile and/or its subsequent 
detoxification by glutathione conjugation should 
explain, at least to a considerable degree, the 
variability in responses. However, no apparent 
correlation between the levels of major metabo-
lizing enzymes, glutathione, or acetaminophen 
plasma levels and liver injury was observed in 
the mouse population. Similarly, no correlation 
with sensitivity for polymorphisms in the genes 
encoding catalase or CYP2E1 was found, imply-
ing that variation at these key mediators of acet-
aminophen toxicity probably do not contribute 
to differential susceptibility. 

It is worth noting that the variations in drug 
exposure and metabolism profile have been 
shown to be common causes of difference in 
adverse effects of chemicals across species and 
strains. For example, the well-described human 
interindividual variability in the metabo-
lism of warfarin, specifically the generation of 
7-hydroxywarfarin, was reproduced in a panel of 
inbred mouse strains [33], and it was determined 
that the phenotypic differences were associated 
with the polymorphisms in the Cyp2c locus. In 
addition, a study that used liver microsomes 
isolated from the panel of mouse strains dem-
onstrated that genetic variation in Cyp2b9 and 
Ugt1a loci played a role in the oxidative metab-
olism of a-hydroxytestosterone and glucuro
nidation of irinotecan, respectively [34]. Thus, it 
should be emphasized that exposure levels should 
always be assessed when using populations of 
strains for genetic biomarker identification.

Not every adverse drug effect in humans 
may be genotype dependent; thus, a mul-
tistrain approach may also prove useful for 
understanding genotype-independent toxic-
ity responses and facilitate the identification 
of novel targets of therapeutic intervention 
that will be effective in the entire population. 
When liver gene-expression levels were assessed 
across strains exposed to acetaminophen, it was 
determined that the genes associated with the 
level of liver necrosis, independent of the genetic 
background, were involved in cell death path-
ways and form a closely linked molecular net-
work [35]. This finding confirms a central role for 
cell death-inducing intracellular cell signaling 
in acetaminophen-induced liver toxicity [32,36]. 

The power of mouse-to-human translation 
studies that use mouse genetic tools has also 
been shown through the QTL analysis of pul-
monary responses to the air pollutant ozone. 
Ozone causes highly reproducible changes in 

pulmonary function in humans, and signifi-
cant interindividual variation in the responses 
have suggested that genetic background is an 
important determinant of susceptibility to 
ozone-induced toxicity [37]. Similarly, signifi-
cant variation in ozone-induced pulmonary 
injury and inflammatory responses has been 
found among inbred strains of mice [38–40]. 
Both F

2
 and backcross studies utilizing differ-

entially responsive strains were used to discover 
a number of candidate QTLs for responsiveness 
to ozone [38,39]. These QTLs guided the selection 
of the candidate genes and loci for validation 
not only in subsequent mouse studies [41–43], 
but two homologs of the mouse susceptibility 
genes (TNF and HLA-DR) have also been asso-
ciated with response to ozone in humans [44,45]. 
Similar QTL mapping approaches have been 
used to investigate many clinical phenotypes, 
including alcohol-related behavior [46], alcohol 
metabolism [47] and iron transport [48].

These studies indicate that the use of an inbred 
mouse strain panel may be a useful tool for 
understanding the mode of action of toxic agents 
and the identification of nodes in the complex 
molecular events that may confer susceptibility 
to adverse events. When genotype-dependent 
chemical-induced toxicity in human population 
is identified or suspected, this approach has sev-
eral benefits. First, potential genetic biomarkers 
may be developed to prescreen individuals prior 
to therapeutic drug treatment when potential 
adverse drug events are suspected. If the genes 
associated with differential susceptibility to 
toxicity are identified in a preclinical phase, the 
subsequent pharmacogenetics research may be 
focused on a few candidates to help overcome the 
challenge of small cohort size in human stud-
ies and to shorten the validation period. The 
data acquired with this model could therefore 
be influential in the analysis of individual risk to 
chemicals and may facilitate both drug develop-
ment and human safety endeavors. At the same 
time, such an approach may not be fruitful in 
safety assessment of experimental drug candi-
dates for which the risk in humans has yet to 
be determined.

Second, the genetic variation among individu-
als is reflected in variation in gene-expression 
levels [49,50], which introduces additional chal-
lenges into toxicology research on biomarkers of 
effect. While major research efforts are seeking 
genetic and genomic markers that could identify 
individuals susceptible to toxicity, less attention 
is given to the fact that genetic control of gene 
expression may present a challenge for finding 
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robust population-wide expression biomarkers of 
toxicity responses [35]. Indeed, it is seldom appre-
ciated in the analysis of gene-expression data that 
the genetic difference between individuals is by 
far the strongest effect on global gene expression 
at both basal levels and even when a considerable 
amount of tissue damage is present [35]. Thus, a 
careful evaluation of gene-expression-based bio-
markers of response through multistrain experi-
ments can avert the risk of mistakenly identify-
ing large genotype effects in a particular strain 
of animals used for toxicity testing as the effects 
of treatment.

Translating SNP/gene associations 
into the mode of action paradigm
Determining which of the multitude of vari-
ants carried by an individual are responsible 
for a given phenotype represents a massive 
task, especially if the causal alleles are relatively 
anonymous in terms of known functional con-
sequences. The best approaches for combining 
functional credibility and statistical support in 
the evaluation of such variants remain to be 
determined. GWAS tend to focus almost exclu-
sively on statistical evidence and give lesser 
weight to considerations of biological plausibil-
ity, but the challenges of finding causal associa-
tions among the large number of rare variants 
may prompt a more careful examination of the 
underlying biology [51].

Toxicogenomics has been used at all stages 
of chemical risk assessment, and it is thought 
that gene-expression changes may be utilized 
as biomarkers of adverse effects [52]. Current 
approaches often attempt to classify compounds 
with the goals of predicting adverse responses 
to specific chemical classes [53], understanding 
the underlying biological mechanism of toxic-
ity [54], or identifying key nodes in the toxicity 
pathway that may serve as effect biomarkers [55]. 
Extensive proprietary [56,57] and public [58] data-
bases containing gene-expression and pathologi-
cal end points derived from rodent and human 
tissues exposed to a variety of chemicals have 
been developed, thereby allowing the scientific 
community to mine the data for biomarkers. 

Gene expression QTL (eQTL) mapping is one 
of the modern tools that support the evaluation 
of associations between transcript expression 
and genotype in order to find genomic loca-
tions that are likely to regulate transcript expres-
sion. The availability of gene-expression and 
high-density genotype data has enabled eQTL 
mapping in animal and human populations. 
These analyses have contributed significantly 

to our understanding of the effects that genetic 
polymorphisms may have on interindividual 
variability in normal physiological processes, 
in multiple tissues, and in both animals and 
humans [50–61]. Furthermore, these studies have 
shown that genetic regulation of gene expression 
is a key contributor to population diversity, and 
is being realized not only through transcription 
factors and subtle variations in sequence of their 
response elements, but also through previously 
unknown mechanisms. While eQTL map-
ping is clearly an important new frontier in the 
application of ’omics technologies to biomedical 
research, no current approaches are available for 
the evaluation of the potential role of eQTLs in 
the response to environmental exposures or the 
pathogenesis of common diseases.

Early eQTL studies surveyed natural varia-
tion in crosses of model organisms such as bud-
ding yeast [62,63] and mouse [49]. In the mouse, 
two inbred parental stains were selected and 
bred in either a backcross or intercross design. 
All progeny mice are genotyped at a density suf-
ficient to distinguish all recombination blocks, 
and microarrays were used to measure transcript 
expression. Previous studies reported significant 
numbers of eQTL (~9% of the transcripts sur-
veyed) and demonstrated that there are genomic 
loci that contain more eQTL than expected by 
chance. These eQTL ‘hotspots’ are thought 
to regulate the expression levels of dozens of 
transcripts [49] and have been observed in sev-
eral tissues in the mouse [49,50,59]. By examining 
the genes that lie beneath the eQTL hotspot, 
investigators can propose regulatory candidates 
for the transcripts with eQTL at the hotspot. 
eQTL studies also commonly identify both cis-
acting eQTL [64], for which a transcript’s eQTL 
is located near the transcript itself in the genome, 
and trans-acting eQTL, for which a transcript’s 
eQTL is located far from the transcript. It has 
been hypothesized that cis-eQTL are caused 
by polymorphisms in regulatory regions close 
to the transcript itself, whereas trans-eQTL are 
caused by polymorphisms in distant genes that 
affect transcript expression, either directly or 
indirectly, in an allele-specific manner.

Indeed, while the study of individual genes is 
informative and can improve our understanding 
of the causes of differential toxicity in popula-
tions, a broader approach that focuses on gene 
networks and biological pathways may produce 
more interpretable results. eQTL mapping can 
be used to generate hypotheses regarding tran-
scriptional regulation and can be integrated with 
gene coexpression data to discover gene networks 
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or pathways that are associated with a clinical 
trait. For example, transcript expression data 
in the livers of a panel of C57BL/6J × DBA/2J 
F2 mice was combined with obesity data, and 
eQTL mapping was used to identify causal 
gene-expression networks [65,66]. eQTL data may 
also be combined with estimates of transcrip-
tion factor activity to infer causal relationships 
between transcription factors and clusters of 
eQTL genes  [67]. Other methods to infer cau-
sality between regulatory candidate genes under 
eQTL hotspots and the trans-regulated genes 
that map to the eQTL locus have also been pro-
posed to assist in narrowing the list of candidate 
genes for further biological investigation [64,68].

Network-based approaches have been used 
in research into Type I diabetes and heart dis-
ease, and have shown the power of integrating 
human data with data derived from mouse mod-
els. A GWAS in a large human population pro-
posed the receptor typrosine kinase ERBB3 as 
the best candidate gene near a QTL for Type I 
diabetes [69]. Separate work that examined liver 
gene expression in a smaller cohort of human 
samples with and without Type I diabetes found 
that ERBB3 did not have a cis-eQTL but that 
a flanking gene, RPS26, did. Since the disease 
phenotype and RPS26 both had QTLs in the 
same location, this suggested the RPS26 was a 
stronger candidate than ERBB3. The authors 
then used mouse liver and adipose expression 
data from several mouse crosses to construct 
causal expression networks for the ERBB3 and 
RPS26 orthologs in the mouse. They were able 
to show that ERBB3 is not associated with any 
known Type I diabetes genes, whereas RPS26 is 
associated with a network of several genes that 
are part of the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) Type I diabetes path-
way [61]. This type of analysis demonstrates the 
power of combining human and mouse data 
with a network-based approach that has been 
proposed for use in drug discovery [70] and may 
prove useful in toxicology studies.

It should be noted that the accuracy of cis-
eQTL detection has been called into ques-
tion owing to the possibility of SNPs residing 
within the sequence queried by microarray 
probes  [64,71,72]. Microarray probes for mice 
are designed based on the reference sequence 
of C57BL/6J. Transcripts in other strains with 
polymorphisms in the probe sequence will bind 
with lower affinity than the C57BL/6J transcript, 
giving the false appearance of allele-specific 
expression levels associated with the transcript 
location, which is the defining characteristic of 

a cis-eQTL. Studies in which shorter, 25-nucleo-
tide microarray probes are used [71] appear to be 
more significantly affected than studies that use 
longer, 50- to 60-nucleotide-long probes [64,72]. 
This is consistent with the hypothesis that a 
SNP within a probe sequence will affect shorter 
probes more strongly than longer probes. The 
validity of eQTL hotspots has also been ques-
tioned [73,74] owing to the possibility that sets of 
highly correlated genes will naturally cluster over 
the same genomic marker. Furthermore, sets of 
highly correlated genes are likely to be part of the 
same gene-ontology category, and so when gene-
ontology category enrichment is conducted on 
eQTL hotspots, they are likely to (falsely) appear 
biologically coherent. A permutation strategy, in 
which the sample labels are permuted and the 
expression labels are held fixed, has been sug-
gested to address this problem [74,75]. False eQTL 
hotspots may also arise owing to intersample cor-
relation, and a mixed-model approach has been 
shown to eliminate spurious eQTL hotspots in 
mouse data [11].

Another matter of concern in eQTL mapping 
studies is how to control for the massive multiple 
testing involved. There are two levels of multiple 
testing carried out in an eQTL study; multiple 
testing across correlated SNPs and across multi-
ple correlated transcripts. Multiple testing across 
SNPs may be addressed by permuting the sample 
labels in the genotype data while holding the 
expression data fixed [75]. Multiple testing across 
genes may be addressed using approaches based 
on the false-discovery rate [76].

Conclusion & future perspective
Recognition of the challenges of currently avail-
able laboratory animal-based genetics resources 
led to the realization that a new general-purpose 
mouse population was needed to model com-
plex human diseases, with particular emphasis 
on traits relevant to human health in its broad-
est aspects. Open discussion among members 
of the genetics community resulted in the con-
ception and design of the ‘Collaborative Cross’ 
(CC) [77,78]. Establishment of this new mouse-
based resource will considerably expedite gene 
discovery and characterization and serve as a 
powerful complement to ongoing studies in 
human genetics.

The CC provides a translational platform for 
systems genetics that integrates classical genetics 
and systems biology tools to identify genetic net-
works that underlie complex phenotypes. A pre-
requisite for systems genetics is a realistic experi-
mental population structure, which is essential 
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to unravel the complex biological processes that 
may differ from one individual to another, such 
as cancer susceptibility or the response to an 
environmental exposure. The CC population 
was created through a community effort by the 
Complex Trait Community [101]. This resource 
will obviate the need for researchers to produce 
ephemeral backcross or F2 populations; it will 
need to be genotyped only once; it will archive 
thousands of recombination events and millions 
of genetic polymorphisms; and it will facilitate 
international and intergenerational comparisons 
of genetic effects. 

The CC satisfies four essential criteria for an 
optimal experimental platform that can support 
systems genetic studies [79]: 

�� Genome-wide genetic variation; 

�� Randomization of the genetic variation; 

�� It is infinitely reproducible; 

�� It is sufficiently large to support statistical 
analysis of the data. 

The overall design of CC consists of eight 
founder strains (A/J, C57BL/6J, 129S1/SvImJ, 
NOD/LtJ, NZO/HiLtJ, CAST/Ei, PWK/PhJ 
and WSB/EiJ) bred through an eight-way ‘fun-
nel’ breeding design established to randomly 
mix the variation present in the founder strains 
before inbreeding by brother–sister mating. The 
founder strains were selected from a set of over 
100 strains in order to maximize genetic diver-
sity and utility for studying traits of widespread 
interest. The eight CC founder strains capture 
approximately 90% of the known allelic diver-
sity across all 1-Mb intervals spanning the entire 
mouse genome; compare this with AXB/BXA 
and BXD, the two most commonly used mouse 
recombinant inbred panels, which each capture 

only approximately 13% of the known variation, 
with much of it overlapping [27]. Furthermore, 
the population of emergent CC lines has a much 
more random distribution of genetic variation 
than existing panels of inbred strains such as the 
mouse phenome panel [80,81], which has consid-
erable genetic linkage across chromosomes that 
result in high rates of false-positive associations. 
Since the CC strains have a population struc-
ture that randomizes existing genetic variation, 
this resource will provide unparalleled power 
to assign causality to understand the intricacies 
of biological networks underlying disease and 
toxicant response. The types, distribution and 
frequency of genetic polymorphisms are close 
to those in human populations, and the fraction 
of genetic diversity captured in CC lines is far 
superior compared with other commonly used 
mouse populations. Importantly, preliminary 
phenotypic characterization of pre-CC strains 
indicates that a very large variability exists 
within the CC population following changes in 
environmental conditions (e.g., diet and exer-
cise). The recombination, inbreeding rates and 
statistical power of this novel cross has been 
examined by others and found to be optimal 
for systems genetics applications [82,83].
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Executive summary

�� Genome-wide association studies in human cohorts, large and small, provide important information on the genetic causes of complex 
diseases, individual susceptibility to chemical exposures and other environmental factors. Still, the validation of the ‘candidate’ genes 
and/or polymorphisms is a daunting task that is compounded by the statistical challenges in defining the candidates.

�� Additional resources for gene/polymorphism discovery are available through in vitro experiments with densely genotyped human cell 
lines assembled into cohorts or familial structures, or in vivo approaches capitalizing on the knowledge of mouse genetics and the 
availability of densely genotyped reproducible panels of strains.

�� Several proof-of-concept studies that utilized the ‘mouse model of the human population’ to advance translational clinical research 
have been published recently. This work points to the promise of the combination approach whereby human disease or toxicity can be 
modeled in animals and lead to the discovery of candidates for validation in human cohorts.

�� Translation of gene/polymorphism associations between species also provides the opportunity to better understand which nodes 
in the complex mode of toxicity/disease pathogenesis pathways are most likely to be causes of genetic diversity in responses. Such 
knowledge will empower the practical use of the genetic information for individualized therapy and/or assessment of risk from 
environmental exposures.

�� The ‘Collaborative Cross’ is a new mouse-based resource that will considerably expedite gene discovery and characterization, and serve 
as a powerful complement to ongoing studies in human genetics.
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